TEMPERATURE CONTROLLER

OPERATION MANUAL

Before using please check whether range , input and output match your requirement.

1. Front panel instruction

1.1 DISPLAY

PV : Process value , 4 digit display (red color)

SV : Setting value , 4 digit display (green color)

1.2 LED

	OUT1	: Output 1 [,] green color
	OUT2	: Output 2 , green color
	AT	: Auto Tuning , yellow color
	PRO	: Program , yellow color
	AL1	: Alarm 1, red color
	AL2	: Alarm 2, red color
	MAN	: Manual , yellow color
1.3	KEY	
	SET	: MODE & SET key
	\langle	:SHIFT key
	\bigtriangledown	: DOWN key
	^	
	\bigtriangleup	:UP key
	A/M	: Auto/Manual key

2 Auto tuning

2.2	Once AT set YES [,] auto tuning is to be performed.			
2.3	After auto tuning finished , PID parameter is to be set			
	automatically.			
2.4	ATVL=auto tuning offset [,] and it will be deduced from SV			
	(it can prevent over shoot during auto tuning)			
	SV-ATVL=Auto-tuning value , ATVL=auto tuning offset			
	Ex.SV=200 $^\circ\!\!\mathbb{C}$ $^\circ$ ATVL=5 $^\circ$ Auto tuning point is at 195 $^\circ\!\!\mathbb{C}$			
	 ATVL means Auto-tuning point in program type 			
2.5	Auto tuning failure			
	Possible 1: ATVL is too big. (If not sure [,] set ATVL=0)			
	Possible 2 : System time is too long.(Set PID parameter			
	individually)			

DISPLAY	DESCRIPTION		
IN1E	Open circuit of main control sensor.		
* ADCF	A/D converter failed.		
* CJCE	Cold junction compensation failed.		
IN2E	Open circuit of sub control sensor.		
UUU1	PV exceeds USPL.		
NNN1	PV under LSPL.		
UUU2	Input signal of sub control exceeds the upper limit.		
NNN2	Input signal of sub control under the lower limit.		
* RAMF	RAM failed.		
INTF	Interface failed.		
AUTF	Auto tuning failed.		

3. Error information

NOTE: If the "*" marked error comes up , the Controller needs repair. Please send it to the nearest sales office or retail dealer.

4. Operating flow

- 4.1.1 Press the **SHIFT KEY** (\checkmark) to change the parameters. If the **SHIFT KEY** is pressed, the first digit begins blinking. Press the **UP KEY**(\checkmark) or **DOWN KEY**(\checkmark) to increase or decrease the value of the digit, then press the **SHIFT KEY**(\checkmark) again to go to the next digit. As all the digit are written, press **SET KEY** to enter the value.
- 4.1.2 **SET KEY** also has the function of changing MODEs , if the **SET KEY** is pressed , the display shows the next MODE.
- 4.1.3 Press **SET KEY** for 5 sec. the display goes to LEVEL 2 [,] and do the same thing to return LEVEL 1.
- 4.1.4 If any key were not pressed for 1 minute , the display would go to LEVEL 1.
- 4.1.5 Press A/M KEY the display to go to LEVEL 1 , no matter where it is.
- 4.1.6 If **OUTL** set "0", it means the controller has no output,

4.2 LEVEL 2 (PID Level) press SET key for 5 seconds to enter Level 2

P1 3	Main Control Proportional Band	Range : 0-200% ON/OFF at P=0
♦ Set 11 240	Main Control Integral Time	Range : 0~3600 Sec Integral OFF at I=0
y Sæ D1 60	Main Control Derivative Time	Range : 0~900 Sec Derivative OFF at D=0
y Sa db 1 0	Main Control Dead-band Time	Dead time compensation Range : 0~1000 Sec
ATVL 0	Main Control Auto tuning off-set	Range : 0~USPL
♦ Set CYT1 10	Main Control Proportional Cycle	Output (SSR=1 , 4 ~ 20mA=0 , Relay=over 10) Range : 0~150 Sec
♦ Set HYS1 1	Main Control Hysteresis	For ON/OFF control only Range : 0~1000
♦ Set <u>P2</u> <u>3</u>	Sub Control Proportional Band	Sames as P1
♦ Set 12 240	Sub Control Integral Time	Sames as I1
y Set D2 240	Sub Control Derivative Time	Sames as D1
CYT2 10	Sub Control Proportional Cycle	Sames as CYT1
HYS2 1	Sub Control Hysteresis	Sames as HYS1
GAP1 0	Main Control Gap (Output 1)	For 2 output use only , set the volume turning. "OFF" early to SV
GAP2 0	Sub Control Gap (Output 2)	For 2 output use only , set the volume turning. "ON" early to SV
LCK 0000	Function Lock	
♦ Set Return P1	LCK=0000 , To enter any Lo	evel (not include SET Level) and change their parameters

LCK=1111 • To enter any Level (include SET Level) and change their parameters

- LCK=0100 , To enter Level 1 & 2 and to change their parameters.
- $LCK{=}0110\,$, To enter Level 1 & 2 and to change Level 1parameters only.
- LCK=0001 , To enter Level 1 only and to change SV only.

 $\mathrm{LCK}{=}0101$, it can't change any parameter except LCK.

4.3 LEVEL 3 (INPUT Level) When LCK=0000 , press SET key and SHIFT KEY for 5 seconds to enter

LEVEL 3		
INP1 K2	Main Control input selection	select the input range ' refer to input selection (P.12 \sim 13)
ANL1 0	Main Control Analog Zero set	It is used as input code are AN1 to AN5 Range : LSPL~USPL
ANH1 5000	Main Control Analog Span set	Same as ANL1
DP 0000	Decimal point	To set the position of decimal point
LSPL 0.0	Lower set-point limit	To set the lowest point within INP1
USPL 400.0	Upper set-point limit	To set the highest point within INP1
♦ Set ANL2 0	Sub Control Analog Zero set	It is used as input code are AN1 to AN5 Range : LSPL~USPL
ANH2 5000	Sub Control Analog Span set	Sames as ANL2
ALD1 01	Alarm mode of AL1	Range:00~19 (see P.14~15)
✓ Set ALT1 10 ✓ Set	Time set of Alarm 1	It is used in program function Range : 0~99.59 min. 0=flicker alarm , 99.59=continued , and other=on delay time
ALD2 01	Alarm mode of AL2	Range:00~19 (see P.14~15)
♦ Set ALT2 0	Time set of Alarm 2	Sames as ALT1
ALD3 01	Alarm mode of AL3	Range:00~19 (see P.14~15)
ALT3 0	Alarm 3 time set	Sames as ALT1
HYSA 0	Hysteresis of alarm	Range : 0~1000
	Main Control calibration	Calibrate the low value of output Range : LSPL~USPL(current output only)

CHO1 3500	Main Control Calibration high	To calibrate the high value of output Range:0~9999(current output only)
★ Set CLO2 150 St	Sub control Calibration low	Same as CLO1
♥ Set <u>CHO2</u> <u>3200</u>	Sub control Calibration high	Same as CHO1
CLO3	Transmitter control Calibration low	Same as CLO1
CHO3	Transmitter control Calibration high	Same as CHO1
RUCY 00	Timer of motor	Full run time of proportional motor (without potentiometer) Range $: 0 \sim 150$ sec.
¥ Set WAIT 0 Set	Use in program for waiting continued operation	0=No Wait Other=Wait volume
HYSM 1	Hysteresis for motor control	Range : 0~1000
¥ Sat IDNO 1	ID number (don't care)	Communication ID number
BAUD 2400	Baud rate (don't care)	UART baud rate selection Range : 110~9600 BIT/sec
SVOS 0 St	Compensate SV	Range : -1000~1000
PVOS 0	Compensate PV	Range : LSPL~USPL
UNIT C	Unit of PV & SV	Range : C , F , A(analog)
¥ Set SOFT 1000 ¥ Set	Soft filter (don't care)	Adjust the response time of PV (the bigger, the faster) Range: 0.05~1.00
CASC	don't care	
♦ Set OUD HEAT ♦ Set	Action mode	Range : heat , cool
OPAD PID	Control action	Range : PID, Fuzzy
HZ 60	Frequency	Range : 50 , 60HZ
Return INP1		

4.4 LEVEL 4 (SET Level) <u>When LCK=1111</u>, press SET key and SHIFT KEY for 5 seconds to enter Level 4. There are SET 0.1 to SET 9.4 for use.

4.4.1 Display :

4.4.2 Function of SETs

SET	Function	SET	Function
1.1	OUTL	5.1	CLO2 , CHO2
1.2	AT	5.2	CLO3 , CHO3
1.3	AL1	5.3	RUCY , WAIT , HYSM
1.4	AL2	5.4	IDNO , BAUD
2.1	AL3	6.1	SVOS
2.2	ANL1 , ANH1 , DP	6.2	PVOS
2.3	LSPL, USPL	6.3	UNIT
2.4	ANL2 , ANH2	6.4	SOFT
3.1	ALD1	7.1	CASC
3.2	ALT1	7.2	OUD
3.3	ALD2	7.3	OPAD
3.4	ALT2	7.4	HZ
4.1	ALD3		
4.2	ALT3		
4.3	HYSA		
4.4	CLO1 , CHO1		

SET	Function	Remarks
8.1	0=No repeat	
	1=Program repeat	
8.2	0=No power failure	Program Use
	1=With power failure	
8.3	0=Start from 0	
	1=Start from PV	
9.3	TRS SV	Auxiliary Output Use
9.4	TRS PV	
0.3	0=No Remote SV	
	1=Remote SV	

• NOTE : Please don't operate SET 8.4 , otherwise the controller's process will be in confusion.

4.4.3 FUNCTION OF LCK

LCK=0000 \cdot It can enter Level 3 (press SET + \checkmark for 5 sec.)

LCK=1111 \cdot It can enter Level 4 (press SET + \checkmark for 5 sec.)

LCK=0100 , It can enter Level 1 & 2 and change their parameters.

LCK=0110 , It can enter Level 1 & 2 but change Level 1 parameters only.

LCK=0001 , It can enter Level 1 only and change SV only.

LCK=0101 , It can't change any parameters except LCK.

4.5 PROGRAM LEVEL (to be ordered)

4.5.1 This program has 2 patterns [,] each pattern contains 8 segments. The segment can be arranged a period of Ramp status or Soak status.

4.5.2 Terminologies

pattern : A program consists of some steps.

- **Step** : A Ramp status + a Soak status.
- **Ramp status** : The status with changing SV.

Ramp status : The status with fixed SV.

4.5.3 Operating

1. "KEY" function(no changing parameter)

(START) : To start program procedure , **PRO** in panel flicker.

(WAIT) : To suspend program procedure , PRO in panel will stop flicker but light.

 \bigtriangleup + SET(JUMP) : To to jump segment.

✓+ SET (RESET) : To reset program procedure , PRO in panel will be "off".

2. Alarm Function :

If **ALD1** to be set "07" (* refer to the selection , p.14~15),

AL1 to be set "2"(AL1=2, it means alarm in segment 2 end),

ALT1 to be set "00.10" (alarm time 10 sec.).

*In this case , when program proceeds to segment 2 end , ALM1 relay will be on 10 sec.

3. END function :

If **ALD** to be set "17"(refer to the selection , p.14~15) , This program will be end in segment 8 or 16.

* In this case , **PV** and **END** will flicker in display window and the alarm relay acts.

This controller doesn't have END order if program procedure are less than 8 segments. In this case , please set segment's out = 0. then this program will be end in last set segment. Otherwise , it will proceed 8 or 16 segments.

4. Linking Function :

PTN=1 proceed pattern 1 , contains 8 segments.

PTN=2 proceed pattern 2 , contains 8 segments.

PTN=0 linking proceed pattern 1 and 2 totally 16 segments.(set PTN1 and PTN2 at first , then set PTN=0)

5. Other function(*refer to LEVEL 4)

SET 8.1=1 program repeat.

SET 8.2=0 No power fail function.

- SET 8.2=1 with power fail function (if power suspend , the controller will keep memory)
- SET 8.3=0 program start from 0.
- SET 8.3=1 program start from PV.

5. INPUT

5.1 Input selection (INP1)

ТҮРЕ	CODE	RANGE
	K1	$0.0 \sim 200.0^{\circ}\text{C} / 0.0 \sim 392.0^{\circ}\text{F}$
	K2	$0.0 \sim 400.0^{\circ}\text{C} / 0.0 \sim 752.0^{\circ}\text{F}$
V	K3	$0 \sim 600^{\circ}$ C / $0 \sim 1112^{\circ}$ F
Γ	K4	$0 \sim 800^{\circ}$ C / $0 \sim 1472^{\circ}$ F
	K5	0~1000°C /0~1832°F
	K6	$0 \sim 1200^{\circ}$ C / $0 \sim 2192^{\circ}$ F
	J1	$0.0 \sim 200.0^{\circ}$ C / $0.0 \sim 392.0^{\circ}$ F
	J2	$0.0 \sim 400.0^{\circ}$ C / $0.0 \sim 752.0^{\circ}$ F
Т	J3	$0 \sim 600^{\circ}$ C / $0 \sim 1112^{\circ}$ F
J	J4	$0 \sim 800^{\circ}$ C / $0 \sim 1472^{\circ}$ F
	J5	0~1000°C /0~1832°F
	J6	0~1200°C /0~2192°F
R	R1	0~1600°C /0~2912°F
N	R2	$0 \sim 1796^{\circ}$ C / $0 \sim 3216^{\circ}$ F
8	S1	0~1600°C /0~2912°F
	S2	$0 \sim 1796^{\circ}$ C / $0 \sim 3216^{\circ}$ F
В	B1	0~1820°C /0~3308°F
F	E1	0~800°C /0~1472°F
	E2	0~1000°C /0~1832°F
Ν	N1	0~1200°C /0~2192°F
1	N2	0~1300°C /0~2372°F
Т	T1	-199.9 ~ 400.0°C / -199.9 ~752.0°F
I	T2	-199.9 ~ 200.0°C / -199.9 ~392.0°F
	Т3	0.0~350.0°C / 0.0~662.0°F
W	W1	$0 \sim 2000^{\circ}$ C / $0 \sim 3632^{\circ}$ F
••	W2	0~2320°C /0~2372°F
ΡΙ.Π	PL 1	0~1300°C /0~2372°F
× •~ 11	PL 2	0~1390°C /0~2534°F
I	U1	-199.9 ~ 600.0°C / -199.9 ~999.9°F
U	U2	-199.9 ~ 200.0°C / -199.9 ~392.0°F
	U3	$0.0 \sim 400.0^{\circ}$ C / $0.0 \sim 752.0^{\circ}$ F

ТҮРЕ	CODE	RANGE
т	L1	$0 \sim 400^{\circ}$ C / $0 \sim 752^{\circ}$ F
L	L2	$0 \sim 800^\circ \text{C}$ / $0 \sim 1472^\circ \text{F}$
IIC	JP 1	$-199.9 \sim 600.0^{\circ}$ C / $-199.9 \sim 999.9^{\circ}$ F
J15	JP 2	$-199.9 \sim 400.0^{\circ}$ C / $-199.9 \sim 752.0^{\circ}$ F
PT100	JP 3	$-199.9 \sim 200.0^{\circ}$ C / $-199.9 \sim 392.0^{\circ}$ F
1 1 1 0 0	JP 4	$0\sim 200^\circ C \ / \ 0\sim 392^\circ F$
	JP 5	$0 \sim 400^\circ C \ / \ 0 \sim 752^\circ F$
	JP 6	$0 \sim 600^{\circ}$ C / $0 \sim 1112^{\circ}$ F
DIN	DP 1	$-199.9 \sim 600.0^{\circ} \text{C} \ / -199.9 \sim 999.9^{\circ} \text{F}$
DIN	DP 2	$-199.9 \sim 400.0^{\circ} \text{C} \ / -199.9 \sim 752.0^{\circ} \text{F}$
DT100	DP 3	$-199.9 \sim 200.0^{\circ}$ C / $-199.9 \sim 392.0^{\circ}$ F
1 1 1 0 0	DP 4	$0 \sim 200^{\circ}$ C / $0 \sim 392^{\circ}$ F
	DP 5	$0 \sim 400^{\circ}$ C / $0 \sim 752^{\circ}$ F
	DP 6	$0 \sim 600^{\circ}$ C / $0 \sim 1112^{\circ}$ F
IIS	JP.1	$-199.9 \sim 600.0^{\circ}$ C / $-199.9 \sim 999.9^{\circ}$ F
J1 5	JP.2	$-199.9 \sim 400.0^{\circ}$ C / $-199.9 \sim 752.0^{\circ}$ F
PT50	JP.3	$-199.9 \sim 200.0^{\circ}$ C / $-199.9 \sim 392.0^{\circ}$ F
1 1 30	JP.4	$0 \sim 200^{\circ}$ C / $0 \sim 392^{\circ}$ F
	JP.5	$0 \sim 400^\circ \text{C}$ / $0 \sim 752^\circ \text{F}$
	JP.6	$0 \sim 600^{\circ}$ C / $0 \sim 1112^{\circ}$ F
AN1	AN1	$-10 \sim 10 mV / -1999 \sim 9999$
AN2	AN2 0 ~ 10mV / -1999~9999	
AN3	AN3	$0 \sim 20 mV / -1999 \sim 9999$
AN4	AN4	$0 \sim 50 mV / -1999 \sim 9999$
AN5	AN5	$10 \sim 50 mV / 1999 \sim 9999$

*The initial set in factor	y is "K2" without any	y certain requirement
----------------------------	-----------------------	-----------------------

6. ALARM

CODE	DESCRIPTION	INHIBIT
00 / 10	None	
01	Deviation high limit alarm	YES
11	Deviation high limit alarm	NO
02	Deviation low limit alarm	YES
12	Deviation low limit alarm	NO
03	Deviation high / low limit alarm	YES
13	Deviation high / low limit alarm	NO
04 / 14	Deviation high / low limit range alarm	NO
05	Absolute value high limit alarm	YES
15	Absolute value high limit alarm	NO
06	Absolute value low limit alarm	YES
16	Absolute value low limit alarm	NO
07	Segment end alarm (use for program only)	-
17	Program end alarm (use for program only)	-
08	System error alarm-on	-
18	System error alarm-off	-
09	Heater break alarm-on (single phase)	-
19	On delay timer alarm	-

Note : the word "**INHIBIT**" means that alarm does not work at the first time.

6.2 Alarm action description

7. Modification of input "TC" \rightleftharpoons "RTD"(on PC

board)

If the controller needs modification from **TC** or **mV** to <u>**RTD**</u> type , please <u>make PAD short</u> on PC board back as following diagram and changing input selection. On the contrary , modify from **RTD** to <u>**TC** or **mV** , <u>make PAD open</u>.</u>

8.Modification of output "Relay" \rightarrow "SSR" \rightarrow "4~20mA" It just needs to <u>change a module</u> at the same position , and modify parameter CYT1 in LEVEL 2.

9. Modification of output

"HEAT/ALARM" -> "HEAT/COOL" (on PC board)

HEAT / COOL

10. Modification of INPUT : $0 \sim 1V$, $0 \sim 5V$, $0 \sim 10V$, mA

10.1 Hardware part :

10.2 Software part(Calibrate input)

11. Special Function Description :

11.1 LEVEL 4 (Set Level)

11.1.1 Second input mode

- INP2=0 Non (TB MODEL ONLY)
- INP2=1 10~50mV / 4~20mA / 2~10V
- INP2=2 0~50mV / 0~20mA / 0~10V

11.1.2 Output mode

- OUTY=0 Single Output
- OUTY=1 Double Output
- OUTY=2 None
- OUTY=3 Motor Valve
- **OUTY=4** 1 φ SCR (Single Phase Control)
- OUTY=5 3φ SCR (Three Phase Control)

11.2 RAMP & SOAK (TB MODEL ONLY)

11.2.1 RAMP :

- I. Please set "SET2.1=1"(Display AL3), "SET4.1=1" (Display ALD3)
- II. ALD3=9 at INPUT Level
- III. RAMP menu will be displayed (replace AL3)

Range : 00.00 ~ 99.99 Unit : $^{\circ}$ C / min (If RAMP not used, set ALD3=0)

11.2.2 SOAK :

- I. ALD1 / ALD2=19
- II. AL1 / AL2 will be display

Range : 00.00 ~ 99.59(Hour.Minute)

11.2.3 Example :

SV=100°C , RAMP=10.00 (°C/min) , AL1=00.10 min , PV=25°C

- 11.3 REMOTE SV (TB MODEL ONLY)
- 11.3.1 Hardware must be mounted
- 11.3.2 Set INP2 to1 or 2 (calibration use ANL2 , ANH2)
- 11.3.3 SET 0.3=0 means local SV
- 11.3.4 SET 0.3=1 means remote SV from Input 2 channel
- 11.4 Alarm Time ALT1/ALT2/ALT3 description (TB MODEL ONLY)
- 1. ALT1=0 means flicker if AL1 is on
- 2. ALT1=99.59 means alarm if AL1 is on
- ALT1=00.01 ~ 99.58 means AL1 is on delay timer(* use for large EMI affect controller)
- 11.5 Renew function "HYSM" → "<u>SETA"</u>

11.6 Function SET8

11.6.1	SET8.1=0	Non
	SET8.1=1	program repeat(PTB model)
11.6.2	SET8.2=0	Non (PTB only)
	SET8.2=1	Power failure access
11.6.3	SET8.3=0	Zero start (PTB only)
	SET8.3=1	PV start
11.6.4	SET8.4=0	Non
	SET8.4=1	display will be transferred to single display (Don't set
		this Bit) $*SET8=0000$ can return double display

11.7	Function S	tion SET9		
11.7.1	SET9.1=0	Non		
	SET9.1=1	PV / SV switching (use for single display so please		
		don't set this Bit.)		
11.7.2	SET9.2=0	Non		
	SET9.2=1	PTB models : Timer change from H.M to M.S		
11.7.3	SET9.3=0	Non		
	SET9.3=1	Transmission SV		
11.7.4	SET9.4=0	Non		
	SET9.4=1	Transmission PV		
11.8	SET0			
11.8.1	SET0.1=0	Non		
	SET0.1=1	TTL communication SV output		
11.8.2	SET0.2=0	Non		
	SET0.2=1	Rate for AL3 (ALD3=0) (see Application 1 , P.23)		
11.8.3	SET0.3=0	Non		
	SET0.3=1	Remote SV		
11.8.4	SET0.4=0	Motor Valve close $=$ "b" out		
	SET0.4=1	Motor Valve close $=$ "a" out		
11.9	WAIT at II	NPUT Level		
	WAIT=0	means "no wait"		
	WAIT≠0	means "wait"		

Application

App1. TTL communication : SV output & RATE function

> Open RATE function (use for slave)

- 11.10 Open Rate : SET0.2=1
- 11.11 Open AL3 : SET2.1=1
- 11.12 Open ALD3 : SET4.1=1
- 11.13 ALD3=0 at INPUT Level
- 11.14 Slave SV = (RATE÷9999)×master SV
- > Example :

Connect Diagram

(All reach to the max value at the same time)

App2. Single Phase Control (for SCR module)

- > Available Models : TB900 / PTB900 , TB700 / PTB700
- Data Change : OUTY=4

CLO1=0 , CHO1=5000 if use for resistance load CLO1=0 , CHO1=4000 if use for inductor load

App3. Single Phase Control (for TRIAC module)

- Available Models : TB900 / PTB900 , TB700 / PTB700
- Data Change : OUTY=4

CLO1=0 , CHO1=5000 if use for resistance load CLO1=0 , CHO1=4000 if use for inductor load

** Controller source phase must be same as load source phase

App4. Three Phase Control

- > Available Models : TB900 / PTB900
- > Data Change : OUTY=5

CLO1=0 , CHO1=5000 only if use for resistance load

 3φ LOAD

App5. Single Phase Zero Control

 Available Models : TB900 / PTB900 , TB700 / PTB700 TB400 / PTB400
 Data Change : OUTY=0

CYT1=1

App6. Three Phase Zero Control

- > Available Models : TB900 / PTB900
- > Data Change : OUTY=0

CYT1=1

App7. Motor Valve Control

- Available Models : TB900 / PTB 900 , TB800 / PTB800 TB700 / PTB700 , TB600 / PTB600
- Data Change : OUTY=3 CYT1=1 ~ 100sec.(Normally set 5 sec.) RUCY=5 ~ 200 sec.
- 1. CYT1 is the cycle time of Open / Close
- 2. RUCY is the running time of motor valve 0 ~ 100%

MOTOR VALVE

